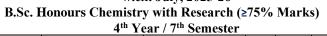


DEPARTMENT OF CHEMISTRY EVALUATION SCHEME OF UG & PG PROGRAM AS PER NEP-2020

4th Year / 7th Semester



		2				Po	eriods p Week	er]	Evaluatio Scheme								Attrib	utes			als
S. No.	Course Code	Course Title	(T)Theory (P) Practical	Course Type	Lecture	Tutorial	Practical	Class Test	Teacher Assessment	Total	End Semester	Subject Total	Total Credit	Employability	Entrepreneurship	Skill Development	Gender Equality	Environment & Sustainability	Human Values	Professional Ethics	United Nations Sustainable Development Goals (SDGs)	
TH	IEORIES																					
1.	B020701T/CH431	Inorganic Chemistry-I	Т		05	01	00	15	10	25	75	100	04	√		V					4 tours 9 water require	
2.	B020702T/CH432	Organic Chemistry-I	Т	Core Major	05	01	00	15	10	25	75	100	04	√		√		V			4 county 9 security security	
3.	B020703T/CH433	Physical Chemistry-I	Т	Core	05	01	00	15	10	25	75	100	04	√	√	√		V	V	V	4 QUATTON	
4.	B190701T/CH434	Concepts and Applications of T Environmental Chemistry			05	01	00	15	10	25	75	100	04	V	V	V		V			G CLAN MATER 11 SACIONAMENTS AND CARRESTON 12 SACIONAMENTS AND CONTRACTORS AND CONTRAC	
PRA	CTICALS																					
5.	B020704P/CH435	5 Chemistry Laboratory-I P				00	04	15	10	25	75	100	04	√		√					4 OBLITY	
				TOTAL	20	04	04	75	50	125	375	500	20									

DEPARTMENT OF CHEMISTRY **EVALUATION SCHEME OF UG & PG PROGRAM AS PER NEP-2020**

w.e.f. July, 2025-26

						eriods p Week			Evaluati Schemo								Attrib	utes			sle
S. No.	Course Code	Course Tide	(T)Theory (P) Practical	Course Type	Lecture	Tutorial	Practical	Class Test	Teacher Assessment	Total	End Semester	Subject Total	Total Credit	Employability	Entrepreneurship	Skill Development	Gender Equality	Environment & Sustainability	Human Values	Professional Ethics	United Nations Sustainable Development Goals (SDGs)
TH	THEORIES																				
1.	B020701T/CH431	Inorganic Chemistry-I	Т	Core Major	05	01	00	15	10	25	75	100	04	√		√					4 COULTY 9 MADERIA MADERIA
2.	B020702T/CH432	Organic Chemistry-I	Т	Core]	05	01	00	15	10	25	75	100	04	√		√		√			4 DOLLATOR 9 WHILE THE STATE OF
3.	B020703T/CH433 or B190701T/CH434	Physical Chemistry-I or Concepts and Applications of Environmental Chemistry	Т	Elective	05	01	00	15	10	25	75	100	04	V	V	V		V	√	√	4 and 6 and and 11 source of the second of t
PRA	CTICALS																				
4.	B020704P/CH435	Chemistry Laboratory-I	P	Core Major	00	00	04	15	10	25	75	100	04	√		√					4 COLLETON
5.	B020705R/CH438	Chemistry Research Project-3	P	Research Project	00	00	08	00	00	00	100	100	04	√	V	√		√	V	√	4 DULY SHAPE TO BE
				TOTAL	15	03	12	60	40	100	400	500	20								

Effective from Se	Effective from Session: 2025-26												
Course Code	B020701T/CH431	Title of the Course	Inorganic Chemistry-I	L	T	P	C						
Year	IV	Semester	VII	5	1	0	4						
Pre-Requisite	B.Sc. with Chemistry	Co-requisite	-										
Course Objectives	magn		o inter										

	Course Outcomes
CO1	Analysis of the metal-ligand bonding using Crystal Field Theory and Molecular Orbital Theory would enable students to
COI	evaluate splitting patterns in metal complexes, and their geometries including Jahn-Teller effects.
CO2	Explanation of the spectral properties would make students interpret electronic configurations of transition metal ions using term
COZ	symbols, microstates, and selection rules, and evaluation of transitions by applying Orgel and Tanabe-Sugano diagrams.
CO3	An understanding of the magnetic properties would enable the students to evaluate the magnetic behaviour of transition metal
COS	complexes and explain their magnetic properties and predict anomalous behaviour.
CO4	Elaborate comprehension of some important inorganic phenomena would lead the students to apply advanced bonding theories
CO4	(Walsh diagrams, Bent's rule, $d\pi$ – $p\pi$ bonding) and analyze the structures of isopoly and heteropoly acids and salts.
CO5	Discussion on the spectroscopic techniques would enable the students to characterize and evaluate inorganic and cluster
005	compounds and explain bonding in cluster compounds.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Theories of Metal- Ligand bonding in complexes	Crystal field theory (CFT) and splitting in octahedral, tetrahedral and square planar complexes, limitations of Crystal field theory, Jahn-Teller effect and Molecular orbital theory.	8	1
2	Colour and electronic spectra	Orbital Angular momentum and Electron Spin Angular momentum, Spin-Orbital Coupling, Russell-Saunders Coupling, Microstates, Energy terms, ground state energy terms, term symbols, ground state term symbol determination of d¹-d¹0 configurations.	8	2
3	Interpretation of Electronic Spectra	Electronic transitions, selection rules, relaxation of selection rules, Orgel, and Tanabe Sugano Diagrams for transition metal complexes with d^1 - d^9 configurations. Racah parameters and Nephelauxetic effect. Significance of Dq and β parameters, charge transfer spectra.	8	2
4	Magnetism	Origin of magnetic moment, variation of magnetic susceptibility with temperature, paramagnetism, ferromagnetism, antiferromagnetism and ferrimagnetism, anomalous magnetic behaviour.	7	3
5	Bonding in the main group elements	Walsh diagrams for tri and penta-atomic molecules, Bent rule, $d\pi$ -p π bond	7	4
6	Isopoly and heteropoly acids and salts	Isopoly and heteropoly acids of V, Mo and W, Structures of isopoly and heteropoly anions	7	5
7	Characterization of Inorganic Compounds	Characterization of inorganic compounds by IR, NMR, ESR (Drago's rule, Kramer's Degeneracy), Mossbauer and microscopic techniques.	8	5
8	Cluster compounds	7	5	

Reference Books:

- 1. Inorganic Chemistry: Principles of Structure and Reactivity by James E. Huheey, Ellen A. Keiter, and Richard L. Keiter (Pearson Education)
- 2. Advanced Inorganic Chemistry by F. Albert Cotton, Geoffrey Wilkinson, and Paul L. Gaus (Wiley)
- 3. Inorganic Chemistry by Gary L. Miessler, Paul J. Fischer, and Donald A. Tarr (Pearson)
- 4. Inorganic Chemistry: Principles and Applications by J. Derek Woollins and R. G. Wilkins (Oxford University Press)
- 5. Concise Inorganic Chemistry by J.D. Lee (Wiley India)

- 1. https://nptel.ac.in/courses/104106120
- 2. https://nptel.ac.in/courses/104105034
- 3. https://www.youtube.com/watch?v=Xs2DDp70rT8
- 4. https://nptel.ac.in/courses/104105034/modules
- 5. https://nptel.ac.in/courses/103108100

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)										SDGs							
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5						
CO1	3	1	1	-	1	3	1	2	3	2	3	1	1						
CO2	3	-	1	-	1	3	1	2	3	2	3	2	1	4 (01:4					
CO3	3	1	1	-	-	3	1	2	3	2	3	1	1	4 (Quality education)					
CO4	3	1	1	-	-	3	1	3	3	3	3	2	1						
COS	3	1	1	_	1	3	1	3	3	1	3	1	1						

Name & Sign of Program Coordinator	Sign & Seal of HoD
Name & Sign of Frogram Coordinator	Sign & Sear of Hob

Effective from Ses	Effective from Session: 2025-26												
Course Code	B020702T/CH432	Title of the Course	Organic Chemistry-I	L	T	P	C						
Year	IV	Semester	VII	5	1	0	4						
Pre-Requisite	B.Sc. with Chemistry	c. with Chemistry Co-requisite -											
Course Objectives	This course deepens understanding of organic chemistry through advanced bonding concepts, reaction mechanisms, and named transformations. It integrates stereochemical principles to enhance analytical and synthetic skills.												

	Course Outcomes								
CO1	Explain bonding characteristics in aromatic, non-aromatic, and antiaromatic systems, including fullerenes, annulenes, and concepts								
of aromaticity and homoaromaticity.									
CO2 Analyze the stability and reactivity of organic reactive intermediates such as carbocations, carbanions, from									
102	nitrenes, and benzynes.								
CO3	Interpret mechanisms of organic reactions involving addition, elimination, and substitution processes.								
CO4	Recognize key named reactions, elucidate their mechanisms, and apply them to synthetic organic transformations.								
CO5	Apply stereochemical principles to understand configurational and conformational isomerism.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Nature of bonding in organic molecules	Bonding in fullerenes, Aromaticity in benzenoid and non-benzenoid compound, alternate and nonalternate hydrocarbons, energy of p-molecular orbitals, annulenes, antiaromaticity, Ψ–aromaticity homoaromaticity.	6	1				
2	Reactive intermediates	Generation, stability and reactivity of carbocations, carbanions, free radicals, carbenes, nitrenes and benzynes.	6	2				
3	Reaction mechanisms	Organic reaction mechanisms involving addition reactions with electrophilic, nucleophilic or radical species. Elimination and substitution reactions with electrophilic, nucleophilic or radical species. Neighbouring group participation, elimination: E2 vs E1, elimination vs substitution.	8	3				
4	Name reactions-I	Aldol condensation, Cannizzaro reaction, Reimer-Tiemann reaction. Reformatsky and Grignard reactions, Michael addition, Friedel-Crafts reaction, Witting reaction, Oppenaur-oxidation, Clemmensen reduction.	8	4				
5	Name reactions-II	Wolff-Kishner reduction, Meerwein-Ponndorf Verley reduction and birch reduction Mannich reaction, Stobbe condensation, Stork Enamine reaction, Shapiro reaction, Perkin reaction.	8	4				
6	Name reactions-III	Woodward hydroxylation, Prevost hydroxylation, Robinson annulations, Sharpless Asymmetric Epoxidation, Ullmann reaction, Benzoin condensation, Dieckmann condensation and Knoevenagel condensation.	8	4				
7	Configurational Isomerism	Optical activity and chirality, molecules with one, two or more chiral centres; Fischer's projection formula, relative and absolute configurations, D L, R S, and E Z system of nomenclature. optical activity in absence of chiral carbon (allenes, spiranes, Hemispiranes and biphenyls), chirality due to helical shape.	8	5				
8	Conformational Isomerism	Conformation in open chain systems, conformational analysis of cyclopental cyclohexane, decalins, Baeyer's strain theory of cyclic compounds and effect						

Reference Books:

- 1. Advanced Organic Chemistry (Reactions, Mechanisms and Structure): Michel B. Smith and Jerry March, 4th Edition, Wiley Inter Science Publication.
- 2. A Guidebook to Mechanism in Organic Chemistry by Peter Sykes, Six edition, Pearson publication.
- 3. Organic Chemistry by Robert Thornton Morrison, Robert Neilson Boyd, and Saibal Kanti Bhattacharjee, Seventh edition, Pearson publication.
- 4. Organic Chemistry by Jonathan Clayden, Nick Greeves, and Stuart Warren, Second edition, Oxford Publication.
- 5. Strategic Applications of Named Reactions in Organic Synthesis by Kürti & Czakó

- 1. https://nptel.ac.in/courses/104105104/
- 2. https://nptel.ac.in/courses/104101005/
- 3. https://nptel.ac.in/courses/104103023/
- 4. https://nptel.ac.in/courses/104106077/
- 5. https://nptel.ac.in/content/storage2/courses/104103071/pdf/mod8.pdf

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	SDGs Mapping
CO	101	102	103	104	103	100	107	100	1501	1302	1303	1304	1303	
CO1	3	2	2	-	ı	2	2	2	3	3	2	3	2	4 (Quality
CO2	3	2	2	-	2	3	2	2	3	3	3	3	3	Education) & 9
CO3	3	3	2	2	2	3	2	2	3	3	3	3	3	(Industry,
CO4	3	3	2	2	2	3	2	2	3	3	3	3	3	Innovation, and
CO5	3	3	2	2	2	3	2	2	3	3	3	3	3	Infrastructure)

Name & Sign of Program Coordinator	Sign & Seal of HoD
Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2025-26								
Course Code	B190701T/CH433	Title of the Course	Fitle of the Course Physical Chemistry-I L					
Year	IV	Semester	VII	5	1	0	4	
Pre-Requisite	B. Sc. with Chemistry Co-requisite -							
Course Objectives	the principles of thermod and equilibrium in chem rates, and how temperatu	lynamics, understandin tical systems. Students are and other factors intughout, the course ble	r gases behave under different conditions. Study g energy, heat, work, and entropy and how the will also study how and why chemical reactifications these rates. Finally, students will explorant fluence these rates. Finally, students will explorants theory with real-world applications to he mistry.	y rela ions h re pho	te to spapen otocher	oontan at cert nistry	eity tain and	

	Course Outcomes
CO1	Analysis of gas behavior using ideal and real gas laws, interpretation of deviations through critical phenomena and Van der Waals relationships, would enable students to evaluate the significance of critical constants and reduced equations in understanding real gas behavior
CO2	Design and application of thermodynamic models using the laws of thermodynamics, entropy, and energy functions like Gibbs and Helmholtz, would enable students to predict energy changes, spontaneity, and equilibrium in physical and chemical systems.
CO3	Evaluation of the rate and mechanism of chemical reactions through integrated and differential methods would enable students to determine reaction order and assess activation energy using the Arrhenius equation and collision or transition state theories.
CO4	Analysis of radioactive decay as a first-order kinetic process, including natural and induced radioactivity, decay modes, half-life, and units of radioactivity, would enable students to interpret nuclear stability and radioactive transformation mechanisms.
CO5	Application of photochemical laws and interpretation of excited-state processes using Jablonski diagram would enable students to analyze photochemical reaction kinetics and evaluate energy transfer mechanisms in photosensitized reactions.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO		
1	Properties of Gases	constants and van der Waals constants, the law of corresponding states, reduced equation of state.				
2	Thermodynamics - 1	System & surroundings, intensive and extensive properties, State and path functions and their differentials, Thermodynamic processes, concept of heat and work. First Law of Thermodynamics; Statement, definition of internal energy and enthalpy, Heat capacity, heat capacities at constant volume and pressure, Joule's law – Joule Thomson coefficient and inversion temperature.	8	2		
3	Thermodynamics - II Second Law of Thermodynamics: Entropy as a state function, entropy as a function of V & T, entropy as a function of P & T, entropy change in physical change, clausius inequality, entropy as a criteria of spontaneity and equilibrium, Equilibrium change in ideal gases and mixing of gases, Maxwell's relations.		7	2		
4	Entropy and Free energy	Gibbs function (G) and Helmhotz function (A) as thermodynamic quantities, A & G as criteria for thermodynamic equilibrium and spontaneity, their advantage over entropy change, Variation of G and A with P, V and T. Nernst heat theorem, statement and concept of residual entropy.	7	2		
5	Chemical Kinetics	Rate of a reaction, factors influencing the rate of a reaction; mathematical characteristics of simple chemical reactions – zero order, first order, second order, pseudo-order, half-life and mean life, Determination of the order of reaction-differential method, method of integration, method of half-life period and isolation method. Theories of chemical kinetics: effect of temperature on rate of reaction, Arrhenius equation, concept of activation energy.	8	3		
6	Radio-kinetics	Radioactive decay as a first order phenomenon, Natural and induced radioactivity; radioactive decay-a-decay, b-decay, g-decay; neutron emission, positron emission, electron capture; unit of radioactivity (Curie); half life period.	7	4		
7	Photochemistry	Interaction of radiation with matter, difference between thermal and photochemical processes, Laws of photochemistry: Grothus – Drapper law, Stark – Einstein law Jablonski diagram depicting various processes occurring in the excited state, Lambert- Beer Law: quantum Efficiency and its determination, Qualitative description of fluorescence, phosphorescence, non-radiative processes (internal conversion, intersystem crossing)	8	5		
8	Application of	Photosensitized reactions – energy transfer processes (simple examples), Kinetics	8	5		

1. Physical Chemistry, by Peter Atkins & Julio de Paula					
2. An Introduction to Chemical Thermodynamics, by R P Rastogi & R R Mishra					
3. Physical Chemistry, Puri, Sharma & Pathania					
4. Nuclear and Radiochemistry by Gerhart Friedlander, Joseph W. Kennedy, and Julian M. Miller					
5. Fundamentals of Photochemistry by K.K. Rohatgi-Mukherjee					
e-Learning Source:					

Decomposition of Hydrogen Iodide and kinetics of dimerization of Anthracene.

reaction;

Hydrogen-Bromine,

Hydrogen-Chlorine,

1. https://youtu.be/o9ueYSKj9og?si=E-2PpMtO6S1YpWKT

of

Photo-chemical

- 2. https://youtu.be/S73srEM_4QA?si=2Lzpq1dkYNb1bojT
- 3. https://youtu.be/umV67dqWVKw?si=4FF0gqiBhxAe2IY4
- 4. https://youtu.be/zVEKh_mCGqw?si=icpxXtZO07hOTc9T
- 5. https://www.youtube.com/watch?v=SgTuWj9Tj80

Photochemistry

Reference Books:

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	SDGs Mapping
CO1	3	1	1	1	1	2	2	2	2	1	2	1	1	4 (Quality
CO2	3	1	1	1	1	3	3	3	3	2	3	3	1	Education) & 9
CO3	3	2	1	1	1	3	2	2	3	2	3	2	1	(Industry,
CO4	3	1	1	1	2	3	3	2	2	2	2	2	1	Innovation, and
CO5	3	2	1	1	2	3	3	3	3	2	3	3	1	Infrastructure)

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2025-26							
Course Code	B190702T/CH434	Title of the Course	Concepts and Applications of Environmental Chemistry	L	Т	P	C
Year	IV	Semester	VII	5	1	0	4
Pre-Requisite	B. Sc. with Chemistry	-					
Course Objectives	This course provides students with essential knowledge of environmental chemistry principles, including chemical equilibria atmospheric and water chemistry, soil composition, and pollutant behavior. It covers analytical methods						

	Course Outcomes					
CO1	Given key chemical principles, students will be able to formulate and apply strategies for evaluating environmental processes and managing pollutants and radiochemical substances.					
CO2	For various atmospheric systems, students will integrate and apply chemical principles to interpret the formation, transformation, and environmental impact of air pollutants, reactive radicals, and photochemical reactions.					
CO3	Given physicochemical data, students will differentiate and evamine the chemical parameters affecting water and soil quality					
CO4	For diverse environmental samples, students will evaluate and select appropriate analytical techniques such as titrimetry, chromatography, spectrophotometry, and atomic absorption for accurate quality assessment.					
CO5	Given national environmental quality standards, students will apply QA/QC procedures to monitor and assess the quality of drinking water, air, and soil effectively.					

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Fundamental of environmental chemistry	Mole Concept, Solution chemistry, solubility product, Solubility of gases, Phase change, chemical kinetics and chemical equilibrium. Sources of natural and artificial radiation, Applications and handling of isotopes and other radionuclides in environment.	8	1
2	Chemistry for Environment	Concept of environmental chemistry; Chemical equilibrium, Conductance; Oxidation and reduction; Acid, bases and salts; Chemistry of various organic and inorganic compounds; Surfactants and pollution caused by surfactants.	7	1
3	Atmospheric Chemistry	Chemical composition of air, Particles, ions and radicals in the atmosphere. Chemical processes for formation of inorganic and organic particulate matter. Thermo-chemical and photochemical reactions in the atmosphere. CFC's and Ozone chemistry, chemistry of air pollutants, photochemical smog.	8	2
4	Environmental aspects of water chemistry	Structure and properties of water, Water quality parameters, Physicochemical concepts of color, odour, turbidity, pH, conductivity, DO, COD, BOD, alkalinity, carbonate system in water, total hardness, redox reactions and disinfection methods.	7	3
5	Environmental aspects of soil chemistry	Soil formation, composition and classification; Soil profile; Soil erosion; Inorganic and Organic components of soil -Nitrogen pathways in soil; NPK in soils.		3
6	Principles of commonly used analytical methods in environmental quality assessment-A	Titrimetry; Gravimetry; Colorimetry; Flame photometry; Basic Chromatography; GC; GLC, HPLC.	7	4
7	Principles of commonly used analytical methods in environmental quality assessment-B Spectrophotometry; Atomic absorption spectrophotometry; Electrophoresis; X-Ray fluorescence, X-Ray diffraction; Inductive coplasma spectroscopy.		8	4
8	Quality Standards	Introduction to Environmental Quality Standards, Basic Concepts in Quality Assessment: Introduction to quality assurance and quality control (QA/QC) in environmental monitoring. Drinking Water Quality Standards (with emphasis on BIS IS:10500:2012), National Ambient Air Quality Standards (NAAQS) (as per CPCB notification) and Soil Quality Guidelines/Standards (Indian context).	8	5

- Environmental Chemistry Manahan, Stanley E, 2004, Taylor & Francis Ltd.
 Basic Concepts of Environmental Chemistry, Desley W. Connell, 1 edition, CRC-Press
 Environmental Chemistry: A Global Perspective, Gary W. Vanloon Stephen J. Duffy, Oxford Univ Pr (Sd).
- 4. Introduction to Environmental Chemistry, Reid, Brian J. Blackwell ScienceLtd.

e-Learning Source:	
1 https://archive.nptel.ac.in/courses/104/103/104103020	
2. https://archive.nptel.ac.in/courses/104/103/104103112	
3. https://archive.nptel.ac.in/courses/103/106/103106118	
4. https://archive.nptel.ac.in/courses/126/105/126105017	

5. Chemistry of the Environment, Thomas G. Spiro, William M. Stigliani, 2nd Edition, Prentice Hall publication

5. https://archive.nptel.ac.in/courses/115/106/115106117

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	SDGs Mapping
CO1	3	-	3	3	2	3	3	3	3	3	3	2	3	6 (Clean Water
CO2	3	-	3	3	2	3	3	3	2	1	2	-	3	and Sanitation) &
CO3	3	-	3	3	2	3	3	3	2	1	2	-	3	11 (Sustainable
CO4	3	-	-	-	3	3	-	2	3	3	3	3	3	Cities and
COS	3	_	2	3	3	3	2	2	3	3	3	2	3	Communities)

1- Low Correlation, 2- Product at Correlation, 5- Substantial Correlation							

Name & Sign of Program Coordinator Sign & Seal of HoD

Effective from Sessio	on: 2025-26										
Course Code	B20703P/CH435	Title of the Course	Chemistry Laboratory-I	L	T	P	C				
Year	IV	Semester	VII	0	0	4	2				
Pre-Requisite	B.Sc. with Chemistry Co-requisite -										
Course Objectives	qualitative analysis of inconstant, etc., along with	organic and organic mixtures a hands-on exposure to the tographic techniques. The co	and develop practical/technical s and determination of molec separation and analysis of un purse also aims to promote t	ular 1knov	weig wn c	ght, r hemi	ate ical				

	Course Outcomes
CO1	Understanding the essentials of qualitative analysis would enable students to identify unknown inorganic and organic mixtures
CO2	The ability to analyze the purity of a substance and the basics of synthesis would help students develop an aptitude towards research.
CO3	An understanding of the determination of molecular weight and surface tension would enable the students to assess important physical characteristics of a given sample.
CO4	Assessment of rate constant, order of reaction, conductance, etc., would help students understand and apply physical chemistry concepts.
CO5	A practical implementation of different chromatographic techniques would enable students to identify unknown components in an unknown mixture.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Inorganic	• To qualitatively analyze the given mixture for not more than 8 radicals	15	1,2
	Chemistry	• To prepare Na[Fe(EDTA)]·3H ₂ O	13	1,2
2	Organic Chemistry	 To separate, purify, and identify the given organic mixture by making suitable derivatives of the three-component Organic mixture (three solids or two solids and one liquid or two liquids and one solid) involving all the functional groups. Use TLC for checking the purity of the separated compounds and their derivatives and report their Rf values. 	15	1,2
3	Physical Chemistry	 To determine the relative surface tension, parachor and molecular surface energy of a liquid by Stalagnometer. To determine the molecular weight of non-volatile solute by using the Rast camphor method. To determine the rate constant and order of reaction for the hydrolysis of an ester by NaOH(saponification). To find out the equivalent conductance of a strong electrolyte at different concentrations at room temperature and test the validity of the Onsager equation. To determine the basicity of a given salt by the conductance method. 	15	3,4
4	Analytical/General Chemistry	 To separate metal ions by paper chromatography To separate amino acids by thin-layer chromatography To separate a mixture of carbohydrates by thin-layer chromatography. To separate plant pigments from green leaves by column chromatography. To determine Total Dissolved Solids (TDS) /Chemical Oxygen Demand (COD) in the given water sample. 	15	5

Reference Books:

- 1. Advance Practical Chemistry: Jagdamba Singh, L.D.S Yadav, Jaya Singh, I.R. Siddiqui, Pragati publication.
- 2. Practical Organic Chemistry, A.I.Vogel.
- 3. Experimental Inorganic Chemistry –W.G.Palmer.
- 4. Advanced physical practical chemistry by J B Yadav Goel publication
- 5. University practical Chemistry; P C Kamboj by Vishal Publication

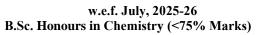
- 1. https://www.fandm.edu/uploads/files/79645701812579729-genchem-reference-for-web.pdf
- 2. https://faculty.psau.edu.sa/filedownload/doc-6-pdf-f06110ef2e1e1ae119cbacf71dd17732-original.pdf
- 3. https://www.stem.org.uk/resources/collection/3959/practical-chemistry

				Course A	rticulatio	n Matrix:	(Mapping	g of COs v	with POs	and PSOs))			
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	SDGs Mapping
CO1	3	2	-	-	-	2	-	3	3	1	1	1	2	
CO2	3	2	-	-	-	2	-	3	3	1	2	2	3	SDG-4
CO3	3	2	-	-	-	2	-	3	3	1	3	3	2	(Quality
CO4	3	2	-	-	-	2	-	3	3	1	2	2	2	Education)
CO5	3	2	-	-	-	2	2	3	3	1	2	2	2	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Ses	ssion: 2025-26		•										
Course Code	B020705R/CH438	Title of the Course	Chemistry Research Project-3	L	T	P	C						
Year	IV	Semester	VII	0	0	8	4						
Pre-Requisite	BSc. with Chemistry	Sc. with Chemistry Co-requisite _											
Course Objectives	-	•	ependent investigations, interpret data using a a comprehensive project dissertation aligned			•							

	Course Outcomes										
CO1	Demonstrate the ability to conduct independent literature reviews to identify relevant research gaps and design appropriate										
COI	experimental approaches in industrial chemistry.										
CO2	Carry out experimental procedures for the synthesis or analysis of chemical compounds using standard laboratory										
CO2	practices and safety protocols.										
CO3	Apply appropriate analytical and characterization techniques (such as FTIR, UV-Vis, GC, or XRD) to evaluate the										
COS	physicochemical properties of synthesized compounds.										
CO4	Analyze and interpret experimental data effectively to draw valid conclusions that support the research objectives.										
CO5	Prepare and present a well-structured research dissertation that clearly communicates the methodology, results, discussion, and implications of the research in a professional format.										
COS	discussion, and implications of the research in a professional format.										

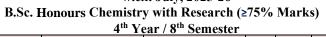

				Course	Articulati	on Matrix	: (Марріі	ng of COs	with POs	and PSO	s)			
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	SDGs Mapping
CO1	2	2	-	-	2	1	2	2	3	1	3	2	2	4 (Quality Education), 9
CO2	1	3	-	2	2	1	2	2	2	2	1	1	1	(Industry, Innovation, and
CO3	2	3	1	2	1	1	2	2	2	1	1	1	3	Infrastructure), & 12
CO4	1	3	2	2	1	-	-	2	1	2	2	2	1	(Responsible Consumption
CO5	1	2	1	-	1	2	2	2	-	2	1	-	3	and Production)

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

DEPARTMENT OF CHEMISTRY EVALUATION SCHEME OF UG & PG PROGRAM AS PER NEP-2020

4th Year / 8th Semester



						eriods p Week	er		Evaluation Schemo								Attrib	utes			si
S. No.	Course Code	Course Title	(T)Theory (P) Practical	Course Type	Lecture	Tutorial	Practical	Class Test	Teacher Assessment	Total	End Semester	Subject Total	Total Credit	Employability	Entrepreneurship	Skill Development	Gender Equality	Environment & Sustainability	Human Values	Professional Ethics	United Nations Sustainable Development Goals (SDGs)
TH	IEORIES																				
1.	B020801T/CH445	Inorganic Chemistry-II	Т		05	01	00	15	10	25	75	100	04	√		√					4 COLLETT 9 MANUFACTOR MODERATOR AND PRINCIPAL PRODUCTOR AND PRINCIPAL PRINCI
2.	B020802T/CH446	Organic Chemistry-II	Т	Core Major	05	01	00	15	10	25	75	100	04	√		√		V			4 COLLETT 9 WANTED NOTIFIED WHO SPRING WATER STATES
3.	B020803T/CH447	Physical Chemistry-II	Т	Core]	05	01	00	15	10	25	75	100	04	√	√	√		√	√	V	4 COLLETTO S MADE PARTICULAR S
4.	B190804T/CH442	Advanced Analytical Techniques	Т		05	01	00	15	10	25	75	100	04	√	~	√		√			4 DALTY 9 MALETY, MODILION DE LOS DELOS DE LOS DE LOS DE LOS DE LOS DE LOS DE LOS DELOS DE LOS DELOS DE LOS DELOS DE LOS DELOS
PRA	CTICALS																				
5.	B020805P/CH448	Chemistry Laboratory-II	P	Core Major	00	00	04	15	10	25	75	100	04	√		√					4 GOLLITY
				TOTAL	20	04	04	75	50	125	375	500	20								

DEPARTMENT OF CHEMISTRY EVALUATION SCHEME OF UG & PG PROGRAM AS PER NEP-2020

w.e.f. July, 2025-26

			(T)Theory (P) Practical		Po	eriods p Week	er]	Evaluatio Scheme								Attrib	utes			sle
S. No.	Course Code	Course Code		Course Type	Lecture	Tutorial	Practical	Class Test	Teacher Assessment	Total	End Semester	Subject Total	Total Credit	Employability	Entrepreneurship	Skill Development	Gender Equality	Environment & Sustainability	Human Values	Professional Ethics	United Nations Sustainable Development Goals (SDGs)
TH	IEORIES																	•			
1.	B020801T/CH445	Inorganic Chemistry-II	Т	Core Major	05	01	00	15	10	25	75	100	04	√		√					4 COLLETTON 9 MANIETRA PROMULTION IN THE COLLEGE IN
2.	B020802T/CH446	Organic Chemistry-II	Т	Core	05	01	00	15	10	25	75	100	04	V		$\sqrt{}$		√			4 COLLETT 9 MANUFACTURE 1 MANUFACT
3.	B020803T/CH447 Or B190804T/CH442	Physical Chemistry-II Or Advanced Analytical Techniques	Т	Elective	05	01	00	15	10	25	75	100	04	√	V	V		√	V	V	4 COUNTY 9 MAD PRODUCTIONS
PRA	CTICALS																				
4.	B020805P/CH448	Chemistry Laboratory-II	P	Core Major	00	00	04	15	10	25	75	100	04	√		√					4 TOLITY
5.	B020806R/CH449	Chemistry Research Project-4	P	Research Project	00	00	08	00	00	00	100	100	04	√	√	√		√	V	V	4 DELTH SHORTER 12 STORES
				TOTAL	15	03	12	30	40	100	400	500	20								

Effective from Sessi	Effective from Session: 2025-26													
Course Code	B020701T/CH445	Title of the Course	Inorganic Chemistry-II	L	T	P	C							
Year	IV	Semester	VIII	5	1	0	4							
Pre-Requisite	B.Sc. with Chemistry	3.Sc. with Chemistry Co-requisite												
	To develop a foundation	onal and advanced und	lerstanding of metal-ligand complex stability	, and	to inti	roduce	the							
Course Objectives	principles and mechani	sms of substitution rea	actions in complexes, along with a compreher	isive t	ınders	tandin	ig of							
	organometallic chemist	ry, interpretation of str	uctures, bonding, and reactivity of metal carbo	nyls ar	nd the	ir clus	ters.							

	Course Outcomes
CO1	Analysis of the thermodynamic and kinetic stability of metal-ligand complexes using valence bond theory and crystal field theory, and explanation of the factors affecting complex stability, would provide insight into the dynamics of coordination complexes
CO2	Explanation and comprehension of the mechanisms of substitution reactions in complexes would enable students to predict the reaction feasibility and application in the design of new complexes.
CO3	A detailed evaluation of the outer-sphere and inner-sphere mechanisms of transition metal complexes would make students analyze and predict the formation of complexes
CO4	Discussion on organometallic chemistry and its applications in catalysis would enable students to predict and analyze their reactivity in key transformations such as oxidative addition and migratory insertion etc.
CO5	An elaborate discussion on cluster compounds would enable the students to interpret the structure and bonding in metal carbonyls and carbonyl clusters by applying IR spectroscopy, Wade–Mingos rules, and isolobal analogy, and assess their reactions.

Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
Metal-ligand equilibria and concerning factors	Kinetic and thermodynamic stability and lability, stability constants. Interpretation of lability and inertness of transition metal complexes on the basis of Valence Bond and Crystal Field theories. Trends in stepwise constant. Factors affecting the stability of metal complex with reference to the nature of metal ion and ligand.	8	1
Substitution reactions in Inorganic Complexes	Substitution reactions in octahedral and square planar complexes, Trans effect, theories of trans-effect-Grinberg's electrostatic polarization theory, application of trans-effect to synthesis of complexes.SN ¹ , SN ² , SN ¹ CB mechanisms, and factors affecting substitution reactions in inorganic complexes.	8	2
Reaction mechanisms of transition metal complexes	Electron transfer reactions, mechanism of one-electron transfer reactions-outer sphere and inner sphere mechanisms, two-electron transfer reactions-complimentary and non-complimentary reactions, mechanism of two-electron transfer reactions.	8	3
Introduction to organometallic chemistry	Ligand hapticity, electron count for different types of organometallic compounds, 18 and 16 electron rule exceptions, nomenclature of organometallic compounds, Reactions in organometallic chemistry (oxidative addition, reductive elimination, migratory insertion, beta hydride elimination)	8	4
Chemistry of metal carbonyls	Structure, π -bonding and IR spectroscopy, bonding modes of CO, synergistic effect, factors affecting the magnitude of stretching frequency, reactions of metal carbonyls including activation, disproportionation, electrophilic addition and nucleophile addition etc.	8	5
Metal carbonyl clustres	Synthesis and Reactions of metal carbonyl clusters, Dinuclear cluster, Low nuclearity carbonyl cluster (LNCC) and High nuclearity carbonyl cluster (HNCC), Capping rules, Polyhedral skeletal electron pair approach (Wade and Mingo's rule), isolabal analogy	8	5
Applications of Organometallic Chemistry	Catalytic cycles of Wacker process, Wilkinson's catalyst in hydrogenation of alkenes, Monsanto's process, hydroformylation of alkenes (Oxo process).	6	4
Ferrocene: structure, Bonding and reactions	Structure and bonding of ferrocene, Reactions of ferrocene and its derivatives, Ferrocene derivatives in asymmetric catalysis	6	5
	Metal-ligand equilibria and concerning factors Substitution reactions in Inorganic Complexes Reaction mechanisms of transition metal complexes Introduction to organometallic chemistry Chemistry of metal carbonyls Metal carbonyls Metal carbonyl clustres Applications of Organometallic Chemistry Ferrocene: structure, Bonding	Metal-ligand equilibria and concerning factors Metal-ligand equilibria and concerning factors Substitution reactions in Inorganic Complexes Reaction mechanisms of transition metal complexes. Reaction mechanisms of transition metal complexes. Introduction to organometallic chemistry Chemistry Metal carbonyls Metal carbonyls Applications of Organometallic Chemistry Applications of Organometallic Chemistry Kinetic and thermodynamic stability and lability, stability constants. Interpretation of lability and inertness of transition metal complexes. Trends in stepwise constant. Factors affecting the stability of metal complex with reference to the nature of metal ion and ligand. Substitution reactions in octahedral and square planar complexes, Trans effect, theories of trans-effect-Grinberg's electrostatic polarization theory, application of trans-effect to synthesis of complexes. SN¹, SN², SN¹CB mechanisms, and factors affecting substitution reactions in inorganic complexes. Electron transfer reactions, mechanism of one-electron transfer reactions-complimentary reactions, mechanism, two-electron transfer reactions-complimentary reactions, mechanism of two-electron transfer reactions. Ligand hapticity, electron count for different types of organometallic compounds, Reactions in organometallic chemistry (oxidative addition, reductive elimination, migratory insertion, beta hydride elimination) Structure, π-bonding and IR spectroscopy, bonding modes of CO, synergistic effect, factors affecting the magnitude of stretching frequency, reactions of metal carbonyl cluster (LNCC), and High nuclearity carbonyl cluster (HNCC), Capping rules, Polyhedral skeletal electron pair approach (Wade and Mingo's rule), isolabal analogy Applications of Organometallic chemistry Catalytic cycles of Wacker process, Wilkinson's catalyst in hydrogenation of alkenes, Monsanto's process, hydroformylation of alkenes (Oxo process).	Metal-ligand concerning factors Complexes Compl

Reference Books:

- 1. Inorganic Chemistry, by J.D. Lee
- 2. Inorganic Chemistry: Principles of Structure and Reactivity, by James E. Huheey, Ellen A. Keiter, Richard L. Keiter
- 3. Advanced Inorganic Chemistry, by F.A. Cotton and G. Wilkinson
- 4. Organometallic Chemistry, by R.C. Mehrotra and A. Singh
- 5. Concise Coordination Chemistry, by R.Gopalan and V. Ramalingam

e-Learning Source:

1. https://nptel.ac.in/courses/104105033

2.	https://www.youtube.com/watch?v=n4cIKKI3_eU
3.	https://nptel.ac.in/courses/104101136

4. https://nptel.ac.in/courses/1041010915. https://nptel.ac.in/courses/104101091

			Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
	PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	SDGs Mapping
ſ	CO1	3	1	1	-	1	3	3	1	3	2	3	1	1	SDG-4 (Quality
ſ	CO2	3	-	1	-	1	2	2	1	3	2	3	1	1	Education)
ſ	CO3	3	-	1	-	1	2	2	1	3	2	3	1	1	SDG-9 (Industry,
ſ	CO4	3	-	1	-	1	2	1	2	3	2	3	1	2	Innovation and
Ī	CO5	3	1	1	1	1	2.	2.	2.	3	2.	3	1	2	Infrastructure)

1- Low Correlation; 2- Moderate Correlation; 3- Substan	itial Correlation
---	-------------------

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2025-26									
Course Code	B020802T/CH446	Title of the Course	Organic Chemistry-II	L	T	P	C		
Year	IV	Semester	VIII	5	1	0	4		
Pre-Requisite	B.Sc. with Chemistry Co-requisite -								
Course Objectives	chemistry. It focuses of use of classical and of Students will also exp	the mechanisms and scontemporary reagents olore the principles of	prehensive understanding of advanced reaction synthetic significance of key molecular rearrant, and the stereochemical insights governing of photochemistry and excited-state dynamics involving alkenes and carbonyl compounds	geme perios, cul	nts, the cyclic minati	e strat	tegic ions. the		

	Course Outcomes
CO1	Explain and compare the mechanisms and synthetic relevance of key molecular rearrangements, including Pinacol, Beckmann,
COI	and Curtius reactions.
CO2	Identify and apply classical and modern reagents (e.g., LiAlH ₄ , LDA, PCC) in diverse organic transformations.
CO3	Analyze pericyclic reactions electrocyclic, cycloaddition, and sigmatropic using orbital symmetry and stereoelectronic
COS	principles.
CO4	Interpret photochemical behavior of aromatic systems via Jablonski diagrams and relate it to reaction pathways.
CO5	Evaluate the synthetic utility and mechanisms of photochemical processes involving alkenes and carbonyl compounds.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO		
1	Molecular Rearrangements-I	Pinacol-pinacolone rearrangements, Wagner-Meerwein rearrangements, Benzil-Benzilic acid rearrangements, Wolf rearrangements, Sommelet Hauser rearrangements Baeyer Villiger rearrangements, Dakin rearrangements.	6	1		
2	Molecular Rearrangements-II	Hofmann rearrangements, Curtius rearrangements, Schmidt rearrangements, Lossen rearrangements, Beckmann rearrangements, Neber rearrangements, Favorskii rearrangements and Fries rearrangements				
3	Reagents in Organic Synthesis-I	8	2			
4	Reagents in Organic Synthesis-I	Gilman's reagent (lithium dimethyl cuprate), Lithium diisopropylamide (LDA), trimethylsilyl iodide, Wilkinson's catalyst, Pyridinium Chlorochromate (PCC), Perbenzoic acid	8	2		
5	Pericyclic reactions; Electrocyclic Reactions	General pericyclic selection rules and their applications, Frontier molecular, π molecular orbital of ethylene, 1,3-butadiene, 1,3,5-herxatriene. Electrocyclic reactions: Introduction, conrotatory and disrotatory motions of $4n\pi$ and $[4n+2]\pi$ systems. Stereochemistry for the ring opening and ring closing electrocyclic reactions, thermal and photochemical cyclisation of $(4n)$ and $(4n+2)$ system.	8	3		
6	Cycloaddition and Sigmatropic Reactions	Thermal and photochemical induced (2+2) and (4+2) cycloaddition reactions. General orbital symmetry rules: [2+2] cycloaddition reactions, [4+2] cycloaddition reactions, cheletropic cycloaddition, 1,3-dipolar cycloadditions including click chemistry; Sigmatropic reactions: (1,3), (1,5), (1,7), (2,3), (3,3), Cope and Claisen rearrangement.	8	3		
7	Basics and Photochemistry of Aromatic Compounds	Excited states and ground state, singlet and triplet states. forbidden transitions, fate of the excited molecules: Jablonski diagram, fluorescence and phosphorescence. Synthetic applications of Barton and Hoffman-Loefller Freytag reactions.	8	4		
8	Photochemistry of Alkenes and Carbonyl Compounds	Photochemical additions; reactions of 1,3-, 1,4- and 1,5-dienes: Di-piemethane rearrangement, Photochemistry of carbonyl compounds: Norrish type I & II reactions (cyclic and acyclic), α,β-unsaturated ketones; cyclohexenones (conjugated), Paterno–Buchi, photooxidation and photoreduction.	8	5		

Reference Books:

- Advanced Organic Chemistry (Reactions, Mechanisms and Structure): Michel B. Smith and Jerry March, 4th Edition, Wiley Inter Science Publication.

 A Guidebook to Mechanism in Organic Chemistry by Peter Sykes, Six edition, Pearson publication.

 Organic Chemistry by Robert Thornton Morrison, Robert Neilson Boyd, and Saibal Kanti Bhattacharjee, Seventh edition, Pearson

- Modern Physical Organic Chemistry Anslyn & Dougherty
- Organic Reaction Mechanisms Grossman

e-Learning Source: https://nptel.ac.in/courses/104105104/https://nptel.ac.in/courses/104101005/

- https://www.organic-chemistry.org/named reactions/beckmann-rearrangement.shtm8.
- 9. https://www.youtube.com/watch?v=F_xKfs4gzLg
 10. https://nptel.ac.in/content/storage2/courses/104103071/pdf/mod8.pdf

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	SDGs Mapping
CO														
CO1	3	2	2	_	2	3	2	2	3	3	2	3	3	4 (Quality
CO2	3	2	_	_	2	3	2	2	3	3	3	3	3	Education) & 9
CO3	3	2	_	_	_	3	2	2	3	3	2	3	3	(Industry,
CO4	3	2	_	_	_	3	2	2	3	3	2	3	3	Innovation, and
CO5	3	2	_	_	_	3	2	2	3	3	2	3	3	Infrastructure)
			1- L	ow Correla	ation; 2- M	oderate Co	orrelation;	3- Substan	ntial Corre	lation				

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Sessi	on: 2025-26					Effective from Session: 2025-26												
Course Code	B020803T/CH447	Title of the Course	Physical Chemistry-II	L	T	P	C											
Year	IV	Semester	VIII	5	1	0	4											
Pre-Requisite	B. Sc. with Chemistry	Co-requisite	-															
Course Objectives	conductance, electrode	potentials, electrochem l explore electrode kir	nd and apply the principles of electroche nical cells, and activity coefficients, to analyzatics, corrosion mechanisms, and methods ical approaches.	ze chei	nical s	system	s and											

•	Course Outcomes
CO1	Evaluation of the conductive behavior of electrolytes and metals by applying ionic dissociation and transport theories would enable students to assess conductivity data and determine dissociation constants, solubility products, and ionic properties using classical electrochemical methods.
CO2	Analysis of electrochemical and concentration cell functioning, interpretation of electrode potentials through the Nernst equation, would enable students to evaluate ionic activities, pH, and solubility using potentiometric techniques and electrochemical measurements.
CO3	Analysis of the structure and thermodynamic behavior of electrified interfaces using models like Gouy-Chapman, Stern, and Bockris-Devanathan would enable students to apply the Lippmann equation to interpret surface excess and electro-capillary phenomena.
CO4	Development of kinetic models for electrode reactions using concepts of overpotential, current-potential relationships, and equations such as Tafel and Butler–Volmer would enable students to predict and design electrochemical behavior in practical systems.
CO5	Analysis of the fundamental causes and mechanisms of corrosion would enable students to assess corrosion monitoring and prevention techniques for controlling material degradation in real-world applications.

Conduction in metals and in electrolyte solutions, specific conductance molar and equivalent conductance, wairiation of molar, equivalent and specific conductance with dilution. Migration of ions and Kohlrausch's law, Arrhenius theory of electrolyte dissociation and its limitations. Weak and strong electrolytes. Ostwald's dilution law, its uses and limitations. Debye-Huckel-Onsager equation for strong electrolytes. Applications Electrochemistry-II Electrochemistry-II Electrochemistry-II Electrochemistry-II Applications Electrochemistry-II Electrochemistry-II Applications Electrochemistry-II Electrochemistry-II Electrochemistry-II Electrochemistry-II Applications Electrochemistry-II Electrochemistry-II Electrochemistry-II Electrochemistry-II Applications Electrochemistry-II Electro	Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
Applications of Electrochemistry-I of Electrochemistry-II Belectrochemistry-II Electrochemistry-II Electrochemistry-II Electrochemistry-II Electrochemistry-II Applications of Electrochemistry-II Electrochemistry-II Applications of Electrochemistry-II Electrochemistry-II Applications of Electrochemistry-II Electrochemistry-II Applications of Electrochemistry-II Electrochemistry-II Electrochemistry-II Electrochemistry-II Electrochemistry-II Electrochemistry-II Electrochemistry-II Electrochemistry-II Electrochemistry-II Electrochemistry of Electrochemistry of Solution Electrochemistry of Electrochemi	1	Electrochemistry-I	and equivalent conductance, measurement of equivalent conductance, variation of molar, equivalent and specific conductance with dilution. Migration of ions and Kohlrausch's law, Arrhenius theory of electrolyte dissociation and its limitations. Weak and strong electrolytes. Ostwald's dilution law, its uses and limitations. Debye-Huckel-Onsager equation for strong electrolytes.	8	1
Belectrochemistry-II Electrochemistry-II Electrochemistry-II Electrochemistry-II Electrochemistry-II Electrochemistry-II Electrochemistry-II Electrochemistry-II Applications Electrochemistry-II Electrochemistry Electrochemical electrode Electrochemical electrochem	2		boundary method. Applications of conductivity measurements: Determination of degree of dissociation, determination of Ka of acids, determination of	7	1
Applications Electrochemistry-II of application of concentration cells, valency of ions, solubility product and activity coefficient. Determination of pH using quinhydrone, calomel and glass electrodes by potentiometric method. Electrochemistry of solution of Activity, activity coefficient, Debye-Huckel limiting law, determination of activity and activity coefficient, ionic strength. Thermodynamics of electrified interface equation, deviation of electrocapillary, Lippmann equation (surface excess), methods of determination, structure of electrified interfaces. Helmoltz-Perrin, Guoy Chapman, and Stern model. Mechanism of electrode reaction, overpotential current, current potential relation, Tafel equation, over-voltage and decomposition potential, Butler Volmer equation. Introduction to corrosion, homogenous theory form of corrosion, corrosion Total activity coefficient. Determination of pH using quinhydrone, calomel and glass electrosic and glass electrodes activity and activity coefficient, Debye-Huckel limiting law, determination of activity and activity coefficient, Debye-Huckel limiting law, determination of activity and activity and activity coefficient, Debye-Huckel limiting law, determination of activity and activity and activity coefficient, Debye-Huckel limiting law, determination of activity and activity and activity coefficient, Debye-Huckel limiting law, determination of activity and activity and activity coefficient, Debye-Huckel limiting law, determination of activity and activity activity and	3	Electrochemistry- II	8	2	
solution activity and activity coefficient, ionic strength. Thermodynamics of electrified interface equation, deviation of electrocapillary, Lippmann equation (surface excess), methods of determination, structure of electrified interfaces. Helmoltz-Perrin, Guoy Chapman, and Stern model. Mechanism of electrode reaction, overpotential current, current potential relation, Tafel equation, over-voltage and decomposition potential, Butler Volmer equation. Introduction to corrosion, homogenous theory form of corrosion, corrosion	4		application of concentration cells, valency of ions, solubility product and activity coefficient. Determination of pH using quinhydrone, calomel and glass	7	2
Thermodynamics of electrified interface of electrified interfaces. Helmoltz-Perrin, Guoy Chapman, and Stern model. Mechanism of electrode reaction, overpotential current, current potential relation, Tafel equation, over-voltage and decomposition potential, Butler Volmer equation. Recorresion Introduction to corrosion, homogenous theory form of corrosion, corrosion 7	5	J		7	2
7 Electro-kinetics relation, Tafel equation, over-voltage and decomposition potential, Butler 8 Volmer equation. 8 Corresion Introduction to corrosion, homogenous theory form of corrosion, corrosion 7 5	6		capillary, Lippmann equation (surface excess), methods of determination, structure of electrified interfaces. Helmoltz-Perrin, Guoy Chapman, and Stern model.	8	3
X I orrogion	7	Electro-kinetics	relation, Tafel equation, over-voltage and decomposition potential, Butler	8	4
	8	Corrosion		7	5

- 1. Physical Chemistry by Puri, Sharma & Pathania
 - 2. Electrochemistry by R. Gopalan, D. Vijayaraghavan & S. Nagarajan
 - 3. Modern Electrochemistry" (Vol I & II) by John O'M. Bockris and Amulya K.N. Reddy
- 4. Electrochemical Methods: Fundamentals and Applications (2nd ed.) by A.J. Bard & L R Faulkner
- 5. Electrochemistry and Solutions Volume 3 by K. L. Kapoor's

- 1. https://youtu.be/rHMZ1Dpk5Fc?si=tDI1GjAlGUMD4Hmv
- 2. https://youtu.be/zxgJst95eIg?si=f5ts5Awpzk_y7Gg1
- 3. https://youtu.be/AeoRKZcDs64?si=sH5dwrUnpcRGvrP-
- 4. https://youtu.be/fZUU42KlwCA?si=eKcJgIZYmKNAwwuC

			Cou	rse Artio	culation	Matrix:	(Mappin	g of COs	with PO	s and PS	SOs)			
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	SDGs Mapping
CO1	3	1	1	1	1	3	2	3	2	2	3	2	1	4 (Quality
CO2	3	2	1	1	1	3	2	3	3	2	3	3	1	Education) & 9
CO3	3	1	1	1	1	3	2	2	3	2	3	3	1	(Industry,
CO4	3	2	1	1	2	3	2	3	3	2	3	3	1	Innovation, and
CO5	3	2	2	2	2	3	3	2	2	2	3	2	2	Infrastructure)

1- LUM	Correlation,	2- Moderate C	orrelation, 5-	Substantiai	Correlation	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Sessi	Effective from Session: 2025-26												
Course Code	B190804T/CH442	Title of the Course	Advanced Analytical Techniques	L	T	P	C						
Year	IV	Semester	VIII	5	1	0	4						
Pre-Requisite	B.Sc. with Chemistry	Co-requisite	-										
	This course introduces	s key analytical techniques for chemical analysis, covering spectroscopy, chromatography,											
Course Objectives	thermal methods, and mass spectrometry. It also explains X-ray diffraction for structural insights into crystalline												
	materials.												

	Course Outcomes
CO1	Analyze and interpret UV-Vis, IR, NMR, and MS spectra to elucidate and design molecular structures and functional groups.
CO2	Evaluate AAS and ICP-MS data to quantify trace elements and heavy metals through flame and plasma atomization techniques.
CO3	Interpret TGA, DTA, and DSC thermograms to characterize decomposition, phase transitions, and thermal stability of materials.
CO4	Apply advanced chromatographic techniques (UPLC, LC-MS, GC-MS) to resolve and develop methods for complex chemical
CO4	matrices.
CO5	Utilize Bragg's Law and single-crystal XRD to construct crystal structures and assess lattice parameters of solid-state
LO3	compounds.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	UV-Visible Spectroscopy	Basic principles, instrumentation, Woodward-Fieser rules, conjugated systems, absorption bands, solvent effects of electronic transitions	6	1
2	Infrared Spectroscopy	Principle of IR spectroscopy- Hooke's law, Vibrational modes, instrumentation, characteristic absorption and fingerprint region, IR frequencies of different functional groups and carbonyl compounds.	8	1
3	NMR Spectroscopy	¹ H and ¹³ C NMR principle, chemical shift, splitting patterns, Nuclear Over Hauser Effect (NOE), relaxation processes, interpretation of NMR spectra of some organic compounds, coupling constant, 2D NMR	8	1
4	Mass Spectrometry	Single and triple quadrupole mass spectrometer, Ionization methods (EI, CI, FAB), fragmentation patterns, McLafferty rearrangement, Nitrogen rule, metastable and molecular ion peaks	8	1
5	Atomic Absorption Spectrophotometry	Principle, Instrumentation, atomization techniques; Flame ionization, inductively coupled Plasma (ICP), AAS and ICP-MS for heavy metals and trace elements analysis.	8	2
6	Thermal Analytical Techniques	Principles and instrumentation of TGA, DTA, DSC; data interpretation and applications in polymers and materials	8	3
7	Chromatographic Techniques	Principles and Classifications of chromatographic methods. Ultra Performance Liquid Chromatography (UPLC): High pressure and speed for improved resolution. Hyphenated Techniques: LC-MS, GC-MS, LC-NMR-principles and real-world. Derivatization and headspace sampling.	8	4
8	X-Ray Diffractometery	Principle, X-ray diffraction and Bragg's Law, Single crystal X-ray diffraction, instrumentation and applications	6	5

Reference Books:

- 1. Pavia, D. L., Lampman, G. M., & Kriz, G. S. Introduction to Spectroscopy, Cengage Learning.
- 2. Skoog, D. A., West, D. M., Holler, F. J. Fundamentals of Analytical Chemistry, Harcourt.
- 3. Kemp, W. Organic Spectroscopy, Palgrave.
- 4. Christian, G. D. Analytical Chemistry, Wiley.
- 5. Banwell, C. N., & McCash, E. M. Fundamentals of Molecular Spectroscopy, McGraw-Hill.

- 1. https://nptel.ac.in/courses/103108100
- 2. https://nptel.ac.in/courses/112106227
- 3 https://youtu.be/CzM-F28a0Uk
- 4. https://youtu.be/l2ENx Y0dNU
- 5. https://youtu.be/PMq02umihQk

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	SDGs Mapping
CO1	3	2	-	-	3	3	2	2	2	3	2	3	3	4 (Quality
CO2	3	2	-	-	2	2	2	1	1	2	2	2	2	Education) & 9
CO3	3	1	-	-	2	3	3	1	1	3	2	2	2	(Industry,
CO4	3	2	2	1	2	3	3	1	1	3	2	3	2	Innovation, and

CO5	3	3	1	1	2	3	3	2	2	3	3	3	3	Infrastructure)	
	1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation														
	Name & Sign of Program Coordinator								Ci P C1-fII-D						
		IN	ame & Sign (oi Program	Coordina	itor			Sign & Seal of HoD						

Effective from Session	Effective from Session: 2025-2026												
Course Code	B020805P/CH448	Title of the Course	Chemistry Laboratory-II	L	T	P	C						
Year	IV	Semester	VIII	0	0	4	2						
Pre-Requisite	B.Sc. with Chemistry	Co-requisite	-										
Course Objectives	exposure to inorganic a	nd organic synthesis and det	pects of inorganic chemistry and ermination of important physisubstance, and estimation of ca	cal p	rope	rties	like						

	Course Outcomes							
	Understanding the essentials of quantitative analysis would enable students to separate metal ions and gain insight into inorganic synthesis.							
CO2	Practical implementation of organic synthesis would enable the students to help understand the basics of organic reactions and their practical implementation.							
003	An understanding of the determination of equivalence conductance, solubility product etc. would enable the students to assess important physical phenomena.							
	Practical implementation of the concepts of reaction kinetics would help students to determine and assess the important characteristics of a chemical reaction.							
CO5	Practical assessment of important compounds like calcium carbonate and ascorbic acid would help students to identify and quantify chemical content in an unknown sample, for quality control.							

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Inorganic Chemistry	 To quantitatively analyze and separate two metal ions, Cu-Ni, Cu-Zn., Cu-Fe, etc., involving volumetric and gravimetric methods. To prepare the given inorganic complex compounds and calculate the % yield: K₃[Fe(C₂O₄); Prussian Blue, Turnbull's Blue; [Ni(DMG)₂] [Cu(NH₃)₄]SO₄.H₂O 	15	1
2	Organic Chemistry	 Two-step synthesis involving: 1. Acetylation 2. Oxidation 3. Grignard reaction 4. Aldol condensation 5. Sandmeyer reaction 6. Acetoacetic ester Condensation 7. Cannizzaro reaction 8. Friedel-Craft reaction 9. Aromatic Electrophilic Substitution 	15	2
3	Physical Chemistry	 To determine the equivalent conductance of a weak electrolyte at different concentrations and hence test the validity of Ostwald's dilution Law. To determine the dissociation constant Ka/Kb of the weak electrolyte. To determine the solubility of a sparingly soluble substance in water at a given temperature by the conductance method. To determine the rate constant for the inversion of cane sugar using a polarimeter. To study the kinetics of decomposition of the complex formed between sodium sulphide and sodium nitroprusside spectrophotometrically, and also find the order and rate constant of the reaction. 	15	3,4
4	Analytical/General Chemistry	 To estimate calcium as CaCO₃ in chalk To prepare Paracetamol. To estimate ascorbic acid in the given fruit juice sample. 	15	5

Reference Books:

- 1. Advance Practical Chemistry: Jagdamba Singh, L.D.S Yadav, Jaya Singh, I.R. Siddiqui, Pragati Publication.
- 2. Practical Organic Chemistry, A.I.Vogel.
- 3. Experimental Inorganic Chemistry –W.G.Palmer.
- 4. Advanced Physical Practical Chemistry by J B Yadav Goel Publication
- 5. University practical Chemistry; P C Kamboj by Vishal Publication

- 1. https://www.srcollege.edu.in/temp/lms/Manuals/OrganicChemistry.pdf
- 2. https://science-blogs.ucoz.com/resources/notes/msc/pract1/Volumetric.pdf
- 3. https://www.studocu.com/in/document/tezpur-university/chemistry/physical-chemistry-manual/7882747

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)														
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	SDGs Mapping		
CO1	3	2	-	-	1	2	2	3	3	3	3	2	3			
CO2	3	2	-	-	1	2	2	3	3	3	3	2	3	SDG-4 (Quality Education)		
CO3	3	2	-	-	1	2	-	3	3	3	3	2	3			
CO4	3	2	-	-	1	2	-	3	3	3	3	2	3			
CO5	3	2	-	-	1	2	2	3	3	3	3	2	3			

Name & Sign of Program Coordinator	Sign & Seal of HoD

= ::: :: == ::::::::::::::::::::::::::											
Effective from Session: 2025-26											
Course Code	B020806R/CH449	Title of the Course	L	T	P	C					
Year	IV	Semester	VIII	0	0	8	4				
Pre-Requisite	BSc. with Chemistry	-									
To develop students' ability to conduct independent investigations, interpret data using appropriate analytic techniques, and compile their findings into a comprehensive project dissertation aligned with academic an industrial standards.											

	Course Outcomes								
CO1	Demonstrate the ability to conduct independent literature reviews to identify relevant research gaps and design appropriate experimental approaches in industrial chemistry.								
CO2	Carry out experimental procedures for the synthesis or analysis of chemical compounds using standard laboratory practices and safety protocols.								
CO3	Apply appropriate analytical and characterization techniques (such as FTIR, UV-Vis, GC, or XRD) to evaluate the physicochemical properties of synthesized compounds.								
CO4	Analyze and interpret experimental data effectively to draw valid conclusions that support the research objectives.								
CO5	Prepare and present a well-structured research dissertation that clearly communicates the methodology, results, discussion, and implications of the research in a professional format.								

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	PSO5	SDGs Mapping	
CO1	2	2	-	-	2	1	2	2	3	1	3	2	2	4 (Quality Education), 9	
CO2	1	3	-	2	2	1	2	2	2	2	1	1	1	(Industry, Innovation, and	
CO3	2	3	1	2	1	1	2	2	2	1	1	1	3	Infrastructure), & 12	
CO4	1	3	2	2	1	-	-	2	1	2	2	2	1	(Responsible Consumption	
CO5	1	2	1	-	1	2	2	2	-	2	1	-	3	and Production)	

Name & Sign of Program Coordinator	Sign & Seal of HoD